skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snow, W M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-intensity neutron beams, such as those available at the European Spallation Source (ESS), provide new opportunities for fundamental discoveries. Here, we discuss a novel Ramsey neutron-beam experiment to search for ultralight axion dark matter through its coupling to neutron spins, which would cause the neutron spins to rotate about the velocity of the neutrons relative to the dark matter halo. We estimate that experiments at the HIBEAM beamline with a 50 m free flight path at the ESS can improve the sensitivity to the axion-neutron coupling compared to the current best laboratory limits by up to 2–3 orders of magnitude over the axion mass range 10 22 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  2. Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A new P-odd and T-odd interaction between polarized and unpolarized nucleons proportional to s⃗⋅r̂ is one such possibility, where r⃗=rr̂ is the spatial vector connecting the nucleons, and s⃗ is the spin of the polarized nucleon. Such an interaction involving a scalar coupling gsN at one vertex and a pseudoscalar coupling gpn at the polarized nucleon vertex can be induced by the exchange of spin-0 pseudoscalar bosons. We describe a new technique to search for interactions of this form and present the first measurements of this type. We show that future improvements to this technique can improve the laboratory upper bound on the product gsNgpn by two orders of magnitude for interaction ranges at the 100 micron scale. 
    more » « less
  3. Abstract The European spallation source (ESS) will be the world’s brightest neutron source and will open a new intensity frontier in particle physics. The HIBEAM collaboration aims to exploit the unique potential of the ESS with a dedicated ESS instrument for particle physics which offers world-leading capability in a number of areas. The HIBEAM program includes the first search in thirty years for free neutrons converting to antineutrons and searches for sterile neutrons, ultralight axion dark matter and nonzero neutron electric charge. This paper outlines the capabilities, design, infrastructure, and scientific potential of the HIBEAM program, including its dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons. Additionally, we discuss the long-term scientific exploitation of HIBEAM, which may include measurements of the neutron electric dipole moment and precision studies of neutron decays. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  4. Abstract The use of transparent test/source masses can benefit future measurements of Newton’s gravitational constant G . Such transparent test mass materials can enable nondestructive, quantitative internal density gradient measurements using optical interferometry and allow in-situ optical metrology methods to be realized for the critical distance measurements often needed in a G apparatus. To confirm the sensitivity of such optical interferometry measurements to internal density gradients it is desirable to conduct a check with a totally independent technique. We present an upper bound on possible internal density gradients in lead tungstate (PbWO 4 ) crystals using a Talbot-Lau neutron interferometer on the Cold Neutron Imaging Facility at NIST. We placed an upper bound on a fractional atomic density gradient in two PbWO 4 test crystals of 1 N d N d x < 0.5 × 10 − 6  cm −1 . This value is about two orders of magnitude smaller than required for G measurements. We discuss the implications of this result and of other nondestructive methods for characterization of internal density inhomogeneties which can be applied to test masses in G experiments. 
    more » « less
  5. Abstract It is highly desirable for future measurements of Newton’s gravitational constant G to use test/source masses that allow nondestructive, quantitative internal density gradient measurements. High density optically transparent materials are ideally suited for this purpose since their density gradient can be measured with laser interferometry, and they allow in-situ optical metrology methods for the critical distance measurements often needed in a G apparatus. We present an upper bound on possible internal density gradients in lead tungstate (PbWO 4 ) crystals determined using a laser interferometer. We placed an upper bound on the fractional atomic density gradient in two PbWO 4 test crystals of 1 ρ d ρ d x < 2.1 × 1 0 − 8 cm −1 . This value is more than two orders of magnitude smaller than what is required for G measurements. They are also consistent with but more sensitive than a recently reported measurements of the same samples, using neutron interferometry. These results indicate that PbWO 4 crystals are well suited to be used as test masses in G experiments. Future measurements of internal density gradients of test masses used for measurements of G can now be conducted non-destructively for a wide range of possible test masses. 
    more » « less
  6. We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of 20.6 6.3 + 7.1 counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with 3.9 σ significance. The result agrees with the predicted standard model of particle physics signal rate within 2 σ . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026